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FOLIATIONS OF POLYNOMIAL 
GROWTH ARE HYPERFINITE 

BY 

CAROLINE SERIES 

ABSTRACT 

We define a class of equivalence relations with polynomial growth and show 
that such relations always support finite invariant measures and are hyperfinite. 
In particular, foliations of polynomial growth define hyperfinite equivalence 
relations with respect to any family of finite invariant measures on transversals. 
We also extend a result of Dye for countable groups to show that if a locally 
compact second countable group G acts freely on a Lebesgue space X with 
finite invariant measure, so that the orbit relation on X is hyperfinite, then G is 
amenable. 

Introduction 

The object  of this paper  is to prove two results about  hyperfinite (approxi- 

mately finite) equivalence relations. In answer to a quest ion of Bowen [1], we 

show that foliations of polynomial  growth define hyperfinite equivalence rela- 

tions with respect to any finite invariant measure  on transversals (w In fact we 

define a class of equivalence relations with polynomial  growth and show that 

such relations always support  finite invariant measures  and are hyperfinite (w 

In the second part of the paper  (w we extend a result of D y e  [2] about  

countable  groups  to show that any locally compact  second countable  (lcsc) g roup  

which has a free action on a Lebesgue  space, preserving a finite measure,  and 

such that the orbit  equivalence relation is hyperfinite, is necessarily amenable .  

NOTATION. All the measures  we consider  will be tr-finite and Borel.  If  X is a 

Lebesgue  space, ~ ( X )  denotes  the Borel  sets of X. Equivalent  measures  are 

written p, ~ ~,. 

T ,p ,  is the measure  induced on Y by the mapping  T:X--~ Y; T , / x ( A ) =  

~(T-~A). 
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w Preliminaries 

Let X be a Lebesgue space. An equivalence relation R on X is Borel if 

R E ~ ( X  x X)  and countable (or finite) if there are at most countably many 

(resp. finitely many) points in each equivalence class. We write xRy or x - y if 

(x, y) E R ; orbax is the equivalence class of x;  and if E E ~ ( X ) ,  the saturation 

of E is [E]R = {x ~ X : : ly  E E, (x, y) E R }. If E, F (~ ~ (X), write R (E, F)  = 

{ T : E - - ~ F :  T is a Borel isomorphism and (x, T x ) E R  V x E E } .  If R is 

countable and /z is a measure on X, /.t is R quasi-invariant if T,/x ~ /x  

VT U R (X, X). Some care is needed in extending this definition to more general 

relations; for example, if X = [0, 1] and xRy Vx, y E X, then if/~ is any Borel 

measure on X, 3 T E  R ( X , X )  so that p., T./~ are mutually singular. 

A (Borel) transversal to R is a set E ~ ~ ( X )  such that orbRx fqE  is 

countable, Vx E X. Let 9- be the family of transversals to R. E E ff  is sufficient 

if [E]R = X (or is conull, if we are concerned with some measure/~ on X).  R is 

concrete if R has a sufficient transversal. A family of measures {vE}z~s is R-  

quasi-invariant if 

(i) rE is a measure on E and r E ( E ) > 0  for some E ~ 5  r, 

(ii) T,~,E ~ r F  whenever T E R ( E , F ) ,  E, F E ~. 

{rE}E~s is invariant if T,rE = rE V T  ~ R ( E , F ) .  

PROPOSITION 1.1. Let R be a concrete equivalence relation with a sufficient 

transversal E, and let A be a non-vanishing measure on E such that T.A - A 

V T  E R(E ,  E). Then there is an R-quasi-invariant family of measures {VF}EE~ 

with rE = A ; moreover {rF}r~s is unique up to measure class, i.e. if {r/~}r~e~ has the 
t same properties then rF ~ v~ VF ~ ~. 

PROOF. Suppose F ~  ,3". By repeated use of the von Neumann selection 

lemma, [13] corollary 8.2, we can find maps T~ E R(E,  T~E) so that TiE C F  and 

the sets T~E are disjoint with union F. Define rFrT, E = T~.A. The quasi-invariance 

and essential uniqueness follow since T.A ~ h V T  E R(E,  E).  Note that if h is 

invariant, then so is {rE}EEl. 

It is often useful to construct quasi-invariant measures for R starting from a 

measure/z  on X. Two examples of this are given in [11], examples 1.6, 1.7. We 

recall these briefly: 

EXAMPLE 1.2. Let ~- be a C '  (r _-> 0) codimension k foliation of a C | 

compact n-dimensional manifold M. The leaves of ~ define a relation R~ on M 
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in an obvious way. Let U, 4, be a co-ordinate chart such that U ~ D k x  D --k, 

where D '  is the open r-disc and 4)-~({x}• D "-~) is the leaf of ~ through 

q~-~(x,O), x E D  k. Such a set U is called a distinguished open set, and 

K = ,b-~(D ~ x {0}) is a transversal to ~. Define vk to be the projection of i~tu 

along leaves of ~. If the family of measures thus obtained is R~ quasi-invariant, 

,~ is said to be absolutely continuous with respect to/z .  

EXAMPLE 1.3. Let G be a lcsc group acting freely and measurable on a 

Lebesgue space X, with measure/~ such that g.g.  - / x V g  ~ G. If U C G is a 

neighborhood of the identity and K ~ ~ ( X ) ,  UK is a U flow box for K if 

U x K---> UK, (u, k ) ~  uk, is injective, and/z (UK) > 0. Clearly K is a transver- 

sal for the orbit relation Ra = {(x, gx) E X x X ;  x E X, g E G}. We will call such 

transversals regular. By [4] theorem 2.8, there are always sufficient transversals 

for Re of the form U~=~K~, where each K~ is a regular transversal. If UK is a 

flow box and zr : UK ---) K the natural projection, then by Proposition 1.1 above 

and [11] theorem 3.11, {zr./ziuK : K is a regular transversal} determines an R 

quasi-invariant family of measures {)'E}z~. 

In the case of an invariant measure, we will need the following result: 

LnMMA 1.4. Let G be a lcsc group acting freely on a Lebesgue space X, with 

invariant measure tz. Let E = U~=IK~ be a sufficient transversal for Ro, where 

each Ki is a regular transversal with flow box U,K,, U~ a neighbourhood of the 

identity in G, and suppose the sets U~Ki are disjoint. Let 7r : X---> E be a 

measurable map with ~' (x)E orbR~x,/z a.a. x E X, and such that ~rlu, r , is the 

projection to K~. Let h be a fixed left Haar measure on G, set vK, = h ( U~ )-~ Tr . #lu,K, 

and vE = E7=1 vr,. For b ~ E and A ~ ~ ( X ) ,  let A ( b )  = 

{g E G : gb ~ A fq 7r-l(b)}. Then 

l z (A)  = fE h(A(b))dv~(b) .  

PROOF. Define a measure /2 on X by 

/2 (a)  = [ h(a(b) )dv~(b) ,  
. I t  

A (X). 

By [10] proposition 1.1,/x =/2 on U~=I UiKi. Therefore, since [E]Ro = X, it will 

be enough to show that/2 is G invariant. By [3] theorem 1, there is a countable 
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group H = {h,}7=~ C R ( E ,  E )  so that R ,  = R61~ where Ral~ is the restriction of 

R6 to E. Moreover  by [11] theorem 3.11, 

dh,vE(x) 
dv~ =A(g) ,  x E E ,  h E H ,  

where hx = gx, g E G, and A is the modular  function of G. 

Fix g E G  and A E ~ ( X ) .  Let A , = { a E A :  ga~Tr-~(h,Tr(a))}. Then 

A,(hT~b) = {g-lkh, : k E (gA,)(b)}, and hence 

fi(gA,) = f~ A((gA,)(b))dv~(b) 

= fe A(gA,(h:'b)hT')duE(b) 

= f~ ;t(A,(h:'b))A(h,)dvE(b) 

= f~ }t(A,(b))dv~(b) = fi(A,). 

Since A = UT=IA,, this gives the result. 

A concrete equivalence relation R on a Lebesgue space X is hyperfinite with 

respect to a family of quasi-invariant measures {v~}z~3 if the countable relation 

Rr~ is hyperfinite with respect to v~, VE E i f ;  i.e. if there is a sequence of finite 

relations S 1 C S 2 C . . . C X X X  on E and with orbRl~ = U~=lorbs.xvE a.a. 

x E E (cf. [4, 11]). Notice that it is in fact sufficient to require that RIE is 

hyperfinite for one sufficient transversal E, since if F is any other sufficient 

transversal, there are partitions E = U~=l E ,  F = U~=IF~, so that R(E,  F~) i ok. 
Suppose R comes from a free group action as in Example  1.3 above. Choose a 

transversal E and ~r : X ~ E as in Lemma  1.4. Let $1 C $2 C �9 �9 �9 be an increasing 

sequence of finite relations on E with U~=~orbsx  = orbRj~x, v~ a.a. x E E. 

Define relations R., n = 1 , 2 , . . . ,  on X by xR,y ~ ~'(x)S,  Tr(y). Clearly 

R~ CR2 C �9 �9 �9 and U~=~orbR x = orbRx,/z a.a. x E X. We will call the relations 

R.  obtained in this way cyclic; notice that each R,  has a measurable cross- 

section Z ,  which can be taken to be a subset of E of positive v measure. We call 

Vlz" the induced measure on Z,. Using Lemma  1.4 and its obvious generalisation 

to quasi-invariant measures tz (cf. [11] theorem 3.11), it is not hard to show that 

the relations R,  are cyclic in the sense of [10]. 
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w Full groups with polynomial growth 

Let R be a countable Borel equivalence relation on a Lebesgue space X. The 

full group of R is [ R ] = { T E R ( A , B ) : A ,  B E ~ ( X ) } .  [R] is generated by 

F C [ R ]  if orbRx = U~=lF"(x), where F"(x)={y  E X :  y = 3'13'2"'" %(x), 

3'i E F, i = n}. In what follows we shall always assume F is symmetric, i.e. if 

3 , : A ~ B E F ,  then 3 ' - 4 : B ~ A E F .  The growth function of R at x with 

respect to F is gx(n)= IF"(x)l. If 

lim inf l l o g  gx(n) > 0, 
r t ~  n 

R has exponential growth with respect to F at x. If g~(n) is dominated by a 

polynomial of degree d, then R has polynomial growth of degree d at x with 

respect to F. It is not hard to see that if R has polynomial growth at x with 

respect to F, then it does so at y, for all y E orbRx. Therefore, if R is ergodic with 

respect to some R quasi-invariant measure/z on X (i.e. the only JR] invariant 

Borel sets in X are null or conull), then R has polynomial growth either almost 

everywhere or almost nowhere with respect to a generating set F. R has 

polynomial growth with respect to F, if R has polynomial growth at x with 

respect to F Vx E X (or # a.a. x E X). For example, if R is generated by the 

action of a group of polynomial growth G, then R has polynomial growth with 

respect to any finite generating set Go of G. In particular, every hyperfinite 

equivalence relation has polynomial growth with respect to a suitable generating 

set. Notice, however, that a relation does not have polynomial growth with 

respect to every generating set; for example, hyperfinite relations can be 

generated by the actions of groups with exponential growth, [8]. 

This definition of polynomial growth is the generalisation to the category of 

Lebesgue spaces and Borel maps of a pseudo-group with polynomial growth [9]. 

By analogy with [9] theorem 3.1 we have: 

THEOREM 2.1. Let R be a Borel equivalence relation on a Lebesgue space X, 
which has polynomial growth with respect to a generating set F for R. Then there is 

an R invariant probability measure tz on X. 

PROOF. It will be sufficient to find ~ which is P invariant in the sense that 

/z(3,A) = / z (A)  whenever 3' E F  and A E ~ (Domain 3,). 

We begin by replacing the generating set F by a generating set F' C R (X, X). 

We can (by thinking of X C[0, 1]) find a countable collection of rectangles 
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A~ x B i C X  x X whose union is X minus the diagonal. If 3' ~ F, 3' : C--~D, 

define 

y , (x )  = 3'(x) x E A, O C, 

= y - ' ( x )  x E B i A D  , 

= x otherwise, 

Let F ' =  {3'~i : 3' E F}. 3', is a well defined element of R ( X , X ) ;  moreover since F 

is symmetric orbrx = orbr, x Vx ~ X. Therefore  F' generates [R] and R has 

polynomial growth with respect to F'. 

Let G be the group generated by F'. By [13] theorem 8.7, there is a compact 

metric G space Y, and an invariant set E E ~ ( Y ) ,  so that X is G isomorphic to 

the Borel G subspace of Y defined by E. F' generates a pseudo-group of 

homeomorphisms of Y, of polynomial growth at all points y E E. Since elements 

of F' are defined on all of Y, f , (y )  = f(3' (y)) is a well defined continuous function 

whenever f E C ( Y ) .  By the method of [9] theorem 3.1 one constructs a F' 

invariant linear functional I on C ( Y )  which corresponds to a F' invariant 

probability measure /z  on Y with supp/z Corb y, for each y E E ;  namely/~ is 

the weak limit of a sequence of measures /~ .  where 

fy 1 f(z), fd . = Ir".(y)l 

for some suitably chosen sequence n, and f E C ( Y ) .  Choose a decreasing 

sequence f ,  E C ( Y )  with f ,  = 1 on E and l i m , ~ f . ( z )  = X~/~ a.a. z E Y. Then 

t z (E)  = l i m , ~ f  f.dl~, f f ,  d tz= l i m , ~ f  f ,  dlz,; moreover  f f ,  dl~, = 1 Vn, r since 

orba y C E. Therefore/~ (E)  = 1./z can therefore be transferred to a F invariant 

measure on X as required. 

It was shown in [2] that if R is an equivalence relation generated by the action 

of a group of polynomial growth, with finite invariant measure, then R is 

hyperfinite. We generalise this to 

THEOREM 2.2. Let R be a Borel equivalence relation on a Lebesgue space X, 

which has polynomial growth with respect to a generating set F for R. Let I~ be an 

R invariant measure on X. Then R, ~ is hyperfinite. 

We divide the proof into a sequence of lemmas. 

We begin with the following result, which is essentially the content of [6] 



Vol. 34, 1 9 7 9  FOLIATIONS OF POLYNOMIAL GROWTH 251 

corollary 2.2: 

PROPOSITION 2.3. Let {an}~=l be a sequence o[positive integers dominated by 

a polynomial in n. Then there are a sequence {pq}~~ pq---,oo, and a constant 

M > O, so that 

a z p < M a p , , V q E N  and l i m a p _ k a ~ = l ,  Y k E N .  

From now on suppose that R is a relation with polynomial growth with respect 

to F, on a Lebesgue space X, and that /z  is an R invariant probability measure 

on X. By the above result, for each x E X, 3 M ( x )  > 0, and {Pq (x)}~=l, so that 

Ir2~('(x)l<M(x)lr~(~'(x)l and lim Ir~'x~-~(x)[ ,~= iF%(,)(x)l = 1, Vk EN.  

DEFINITION 2.4. Suppose W E  ~ ( X )  and for each x E W, we have P(x)C_ 

orbRx. If P ( x ) n P ( y ) = O  whenever x J y ,  then I ~ =  U { P ( x ) : x E W }  is 

called the {P(x)}x~w stack on base W. A {P(x)}x~w stack W has height <-_ N if 

P(x)C_FN(x) Vx E W. 

The n-boundary of a stack W is O,l,~' = {x E if '  : F"(x) ~Z I7r A F" stack is a 

{F"(x)}~w stack on some base W. P(x)  is called the column of I~' containing x. 

LEMMA 2.5. Suppose A E g3(X) is such that IF2"(x)l < M I r " ( x ) [  Vx e A. 

Then there is a F" stack if 'on base W so that W C_ A and tx (if ') > (1/M)tz(A ). 

PROOF. By standard techniques it is clear that if {y,(x), �9 �9 yp(x) : 3', E F} are 

distinct for each x E B E C ( X ) ,  / z ( B ) > 0 ,  then there is a set C E ~ ( B ) ,  

/z ( C ) >  0, so that y l C , "  ", ypC are disjoint. By subdividing A into sets on which 

precisely {y~l(X),"" ", y~,(x) : y~, E F, r-< n} are distinct, we see that C E ~ ( A ) ,  

/z (C) > 0, so that C is a base for a F" stack. Choose a maximal such set C. Then 

A CF2"C, otherwise C would not be maximal. Moreover it is clear by a counting 

argument, using the invariance of/x, that [F2"C I < M I F" 1. This gives the result. 

LEMMA 2.6. Let IYCC_X be a F" stack on base W and suppose IF" (x ) l<  

(1 + e) lF"-k(x) lYx E W. Then/z (0k(if')) </x  (lgr). 

PROOF. Okl,V _C U {F" (x ) -  F"-k(x) : x E W}. The result follows by a count- 

ing argument. 

To prove hyperfiniteness we construct stacks of bounded height with small 
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n-boundary which fill up most of X, for arbitrarily large n. The method is 

analogous to one of the standard proofs of Rohlin's theorem, cf. [8]. 

PROPOSITION 2.7. Suppose n E N and e, 8 > 0 are given. Then 

3Y ,  Z E ~ ( X ) ,  N =  N(n,e ,  8 ) E N ,  and a = a ( e ) > 0  so that Y C_Z, / z ( Z ) >  

1 - e, /z  (Z  - Y) < 8, and so that if A E ~ (Y )  then there is a stack (V of height 

<- N on base W C_A, wi th /z ( f f ' )  > a /z (A)  and/~ (3,ff ')  < 8/z(lYv'); moreover a 

does not depend on n or 8. 

PROOF. By Proposition 2.3 we can find Z E ~ ( X )  and M > 0  so that 

~ ( Z ) >  1 -  e and M(x)<=M for x E Z. For x E Z, set 

p(x)  = min{p : [rZp(x)l < M / r r ( x ) l  and I r r (x)[  < (1 - 8)lFr-"(x)l}.  

Such p always exist by Proposition 2.3. Let Yr = {x E Z : p ( x ) =  p}. Choose 

N E N so that p. (I, J r ~  Yr) > /z  (Z)  - 8 and set Y = I,.JrN=~ Yr- Let A r = A fq Yr- 

By Lemma 2.5 there is a F N stack ff'N on base WNCAN, with p.(ff 'N)> 

(1/M)/z (AN). By Lemma 2.6, p. (,9, Y)~zN)< 8~ (if'N). Repeating the argument, we 

can inductively find F N-' stacks if'N-, on base WN_, CAN_, - I-Jj>N_,F2JW, �9 with 

,)>~/z(AN_,-j>I,.~N_F2'Wj) and /z(3.ff'N , ) <  8g.(I$'N-,). ~ ( WN 

Since W~ n (I..J~>,F:iWj) = O, ~ r = ~ Vj > i. Therefore the sets IX/, are 

disjoint and W = I,.Jj~ ~ is a stack as required, with a = 1/M. 

PROPOSITION 2.8. Givenp EN,  e > 0 ,  t h e n t h e r e a r e N ~ N  andas tack  Qo[ 

height <-_ N so that 

tz (OplT")< e/z (~') and / z ( V ) >  1 -  e. 

PROOF. Choose a, Z as in Proposition 2.7 using e/2 in place of e. Choose 

8 > 0 so that (1 - 8)2(1 - 8 - e/2) > 1 - e, 8(1 - 8) -1 < e, and choose m so that 

( 1 -  a ) "  <8 .  

Using Proposition 2.7 define N,  1 < i =< m, inductively by 

N1 = N(2p, e ~,8) ,  Nl>=p, 

and 

N, = N(2N~-I, 2, 8), ~ >= N~-I. 
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Proceeding inductively choose 

Win_, C A - g j  . . . .  ~ with 
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Let Y, C_ Z, 1 -< i =< m, be the sets corresponding to Y in 2.7, so that/~ (Z - Y,) < 

8/m, 1 <= i <-- m. Let A = f'l~'=~ Y~. By 2.7, choose a stack ff'm of height =< N., on 

base W,, CA, with 

and /z (02~._, l~zm) < 8/z (Is162 

stacks IS'm_, of height <Nm-,  on bases 

~ ( f f ' , . _ , ) > a / z ( A -  U l,lzj) and ~(92~, . . . . .  ff'm_,)<~/z(I~,,_,). 
j>m--r  

Set Q~ = ~ - 0N,_~ r~. Then, since W~ C Y, - U j>, ~ ,  and Nj => N, for j > i, 

n ~ c_ a,,,_, ~ for / > i 

a n d s o  Q~ N ~ = f~, j > i. 
m m 

Set Q = Uj~l ~ .  We have t z ( V ) >  ( 1 -  ~)/z(Uj=~ if/j) and 

j = l  

Also inductively, 

/ z ( a -  U f f ' m ) < ( 1 - a ) m - ' + l / z ( a ) ,  l<-J <=m. 
j>i 

Therefore 

Therefore, Q is a stack of height =< N,, as required. 

PROOF OF TrtEOREM 2.2. Suppose inductively that finite relations R1 C_ R2 C 
�9 .. C R, on X and integers M(1) -< M(2) ~ . . .  =< M ( N )  have been chosen such 

that 

(1) orbR,(x) _C orbR(x), Vx ~ X, 

e j__< 
(2) tz{x E X : F ~ ( x ) e ' o r b R j ( x ) } < ~ ,  n, 

(3) xRjy => x ~ r'~ / _-< n. 

By Proposition 2.8 find a stack if" of height =< N such that 
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E E 
/z ( ~ , ~  I~') < ~-~/z (if ' )  and /x (if ')  > 1 - 2,+-----5. 

Set f" = i f ' -  Out,~l~'. Define R~§ as follows: xR,§ if and only if either 
(a) x, y I~ [ 17]R., xR,y 

o r  

(b) x, y ~ [ 17]R., xR,w, yR,z, and w, z are in the same column of I7. 

Setting M(n + 1) => max(2N, M(n)), it is not hard to check that R.§ satisfies 

(1), (2) and (3) and that R is therefore hyperfinite. 

w Foliations of polynomial growth 

Foliations of polynomial growth are defined in [9]. Let ,~ be a C '  foliation of a 

compact manifold M and let {U~}7=1 be a cover of M by distinguished open sets 

with coordinate maps U ~ D  k x D "-k as in Example 1.2. Let K~ = 

~b71(D ~ x{0}) and let ~(x)=ck:~l({Cb~(x)}xD'-k), x UK, One can choose 

{u~};'=x so that, if xEU~, ~ ( x ) n ~ i ( y ) # O  for at most one y E K j .  Let 

X = U~'=l Ki. Define partial homeomorphisms 3'~i : K~ ~ Kj, 3,~j(x) = y if and only 

if ~ , ( x ) n ~ j ( y ) # O .  F={y,j:l<-i,j<=n} generates a pseudogroup of 

homeomorphisms of X. ~T has polynomial growth if Vx E X, gx(n) is bounded by 

a polynomial in n, where 

g~(n) = I{Y E X :  y = 7,~3'~,~" �9 �9 7,:.+~(x), r _-< n}l. 

It is clear that X is a sufficient transversal for R~ in the sense of w and that Rwlx 
has polynomial growth with respect to the set F. Therefore by Theorem 2.1, 

there is an Rwlx invariant measure on X, and hence by Proposition 1.1 a family 

of Rw invariant measures on transversals to Rw. Moreover any R~ is hyperfinite 

with respect to any R~ invariant family of measures on transversals. (If the 

measure on X is infinite, we simply partition X into subsets of finite measure 

and work on each set separately.) 

REMARK 3.1. It would be desirable to have this result without restriction to 

the case of invariant measure; unfortunately the methods of w do not seem to be 

adequate. Note, however, the following facts: 

(i) The stable and unstable foliations of Anosov ditteomorphisms have 
polynomial growth by [12] lemma 4. 

(ii) These foliations are absolutely continuous with respect to any equilibrium 
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state, and hyperfinite with respect to the induced measure on transversals (which 

is not in general invariant), [11, 1]. 

w Hyperfiniteness and amenability 

It was shown in [2] p. 159 that if G is a countable group acting freely on a 

Lebesgue space X with finite invariant measure/z so that Re is hyperfinite, then 

G is amenable. We extend this result to arbitrary lcsc groups. Our method gives 

a different proof of Dye's result in the countable case, and is related to ideas in 

[7]. 

We shall show G is amenable by finding highly invariant sets A _C G. More 

precisely, we use the following condition for amenability, [5] p. 65: 

(*) Given e, 6 > 0  and a compact set KC_G, there exist AE~(G) ,  
N ~ ~ (K), with 0 < A (A) < ~, A (N) < 6, and A (xA AA) < eA ( A )  Vx E K - N, 

where A is a fixed left Haar measure on G. 

To build highly invariant sets A, we find a cyclic relation R.  C Re such that for 

most x E X, {g E G : gx E R.x} is a highly invariant set in G. In fact we shall 

show that G satisfies the following condition: 

(**) Given e > 0 and a compact set K _C G, there exists a relatively compact 

set F C G such that 

X x X ({(k, f )  E K x F : k,fIZ F}) < eA (K)A (F). 

LEMMA 4.1. Condition (**) implies (*). 

PROOF. Suppose (**) holds. Given e, 6 > 0, K _C G compact, find F such that 

A x A ({(k, f )  E K • F: kf~. F}) < ~ A (F). 

For k E K ,  set Fk = { f E F : k f E F } ,  and set 

C = {k E K : A ( F -  Fk)>2A(F)} .  

Then 

A(C)A(F)2<= fc A(F- Fk)dA(k)<26A(F ) 

so that X (C) < & Clearly Fk C F, kFk C F and X (Fk) > (1 - e/2)h (F). Therefore 
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and 

since 

A (kF - F)  <= ,~ (kF - kF~) = A (F - Fk ) 

A (F - kF)  <- A (F - kFk) = ,~ (F - F~ ) 

) t ( F - F E ) +  ,~(Fk)= ) t (F)= A ( F - k F k ) +  A(kFk)= A ( F -  kFk)+ ,~(Fk). 

Hence )t ( k FAF)  < eA (F) for k ~ C. 

LEMMA 4.2. Let G be a lcsc group acting on the Lebesgue space X, with finite 

invariant measure tz, so that Re  is hyperfinite. Then there are cyclic relations 

R, C RE C_ . . . ,  so that RG = U~=~R, and so that orbR.x C_ Kx [or all x E X, 

where K C_ G is a compact set depending on n but not on x. 

PROOF. Choose a sequence K1 C_ K2_C . . .  of compact  sets with U ~ = , K ,  = 

G. Suppose $1 C_ S2 C_ . .  �9 is an increasing sequence of cyclic relations on X with 

U~=~ S, = RG. Let Z ,  be a measurable cross-section for S,. Let A 7  = {x E X : 

xS,z, z ~ Z,,  x = hz, h ~ Kin}. Then U~,=~A~' = X for each n, and 3m (n) such 

that /z (A 7) > 1 - 2-". We may clearly assume m (1)_<- m (2) = . . . .  

Let C, = (ATt")) ' and let B,  = U ~ = , G .  Define R~, N = 1 , 2 , . . - ,  by 

where qb is the trivial relation with one point equivalence classes. It is clear that 

on ((')~=IB,)', R 1 C R 2 C  " "  and U ~ = I R , - - R e .  Moreover,  /z ( ( ' )~=lB,)  = 0, 

_ K,.~.)K,.~.)x, Vx  ~ X. and orbRx C -1 

THEOREM 4.3. Let G be a lcsc group acting freely and measurably on a 

Lebesgue space X,  with finite invariant measure Ix, so that Ro  is hyper[inite. Then 

G satisfies (**) (and hence is amenable). 

PROOF. Since G acts freely on X, the map ( g , x ) ~  (gx, x)  identifies G x X 

with Ro C X x X. Let to be the measure )t x/~ induced on Ro, where A is a fixed 

left Haa r  measure on G. 

Suppose a compact  K C G  and e > 0  are given. Let R 1 C R 2 C ' "  be an 

increasing sequence of cyclic relations chosen to satisfy the conditions of Lemma  

4.2, with U ~ = I R ,  = Ro. 

Since to(K x X )  = A(K)/z(X)  <o0, ::In E N such that 
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to(K X X n R, )  > (1 - e3)w(K x X). 

For x ~ X ,  let C(x)--{gEK:gxf f :orbRx} and let Y = { x E X : A ( C ( x ) ) <  
eA (K)}. Then 

(1 -  ~2),o(r x X ) <  ,o(r  x X n R.) 

= f,. ,~(r-c(x)),~j,(x)+ fx-,. ~,(r-c(,,))d~,(x) 

=< A (K)/~ (Y) + (1 - e)h(r)l~(X - Y), 

so that 

(4.4) 1 - e 2 =</x (Y). 

Now let Z E ~ ( X )  be a cross-section for R., and for z ~ Z ,  set F ( z ) =  

{g E G : gz E R,z}. By assumption F(z) is contained in a compact set and so 

0 < A ( F ( z ) ) < ~  for z EZ*,  where Z * G ~ ( Z )  and [Z*]R. is conull. Let 

Y(z) = {g E G :gz E Y} and let 

Z ,  = {z E Z : h (F(z) n Y(z)) < (1 - e)h(F(z))}. 

By Lemma 1.4, 

f 
/z([ZI]R. O Y ) =  I_ X ( F ( z ) n  Y(z))dv(z) 

d z  1 

( 1 -  e ) (_  A(F(z))dv(z) < 
d z  

1 

= (1 - e)/z ([Z,]a.) 

where v is the induced measure on Z. By (4.4), 

1 - e2_- < /~ (Y)  _-</z(Y n [Z~l. . )+ g ( X -  [Z~]..) 

hence 

Choose z o E Z - Z ,  with 

{g E F : gZo E Y}. Then 

< (1 - e)/~ ([Zl]~.) + g ( X  - [Zx],. ), 

~, ( [ z , ] . . )  < ~. 

O<A(F(zo))<o% and set F = F ( z o ) ,  

{(k,f) E K x F :  k f~  F} C_ ( s~ '  (C(gzo)x {g})) U (K x ( F -  F')). 

F,  = 
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and 
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A x A (K x (F - F')) _-< A (K)A (F - F ')  =< eA (K)A (F) 

A•  A( I,.J C(gzo) • {g} ) = fF A(C(gzo))dA(g)< eA(K)A(F'). 
gEF'  

Thus )t x )t ({(k, f )  E K • F : kff~ F}) -< 2e)t (K)A (F), as required. 

Note added in proof. Since writing this paper the work of M. Samuelides, 

Tout feuilletage gl croissance polynomiale est hyperlini, Publications 

Math6matiques de l'Universit6 Pierre et Marie Curie, No. 10, 1978, which 

contains a similar result to our w has been brought to our attention. 
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